Uncertainty of Combined Permittivity and Per-

2.5

meability Determination

[n this section an uncertainty analysis is presented. The sources of error in the permeability

and permittiv1ty TR measurement include
o Errors in measuring the magnitude and phase of the scattering parameters,
o Gaps between the sample and sample holder,
o Sample holder dimensional variations,
o Uncertainty in sample length,
e Line losses and connector mismatch, and

e Uncertainty in reference plane positions.

A technique for correcting errors arising from gaps around the sample is given in Ap-
pendix B [33,34,35]. Gaps between holder and sample either may be corrected using the
formulas given in the appendix or conducting liquid solder can be painted on the external
surfaces of the sample that are in contact with the sample holder before insertion into the
sample holder, thereby minimizing gap problems. The formulas given in the literature gen-
erally under-correct for the real part of the permittivity and over-correct for the imaginary
part of the permittivity. We assume that all measurements of permittivity have been cor-
rected for air gaps around the sample before the uncertainty analysis is applied. In order
to evaluate the uncertainty introduced by the measured scattering parameters and sample
dimensions, a differential uncertainty analysis is assumed applicable with the uncertainty
due to S;; and Sy, evaluated separately. We assume that the S-parameters are functions
of Si;(1Sul,1S21],611,02, L,d). We assume that the total uncertainty in €g, where d is
the air gap between the sample and waveguide. We assume that the uncertainties for the
physically measured parameters are
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where a = 11 or 21, A8 is the uncertainty in the phase of the scattering parameter, A|S, | is
the uncertainty in the magnitude of the scattering parameter, Ad is the uncertainty in the
air gap around the sample, and AL is the uncertainty in the sample length. The derivatives
with respect to air gap, Je/0d, have been presented previously [26]. The uncertainties
used for the S-parameters depend on the specific ANA used for the measurements. This
type of uncertainty analysis assumes that changes in independent variables are sufficiently
small so that a Taylor series expansion is valid. Of course there are many other uncertainty
sources of lesser magnitude such as repeatability of connections and torquing of flange bolts.
Estimates for these uncertainties could be added to the uncertainty budget.

2.5.1 One Sample at One Position

For the uncertainty analysis it is necessary to take implicit derivatives of the S-parameter
equations with respect to the assumed independent parameters. It is assumed that the
functions are analytic over the region of interest with respect to the differentiation variables.
. The independent variables are assumed to be |Sy|, {S11l, 011, 021, and L. The derivatives
of the S-parameter eqs (2.31) through (2.33) can be found analytically
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where we have defined parameters A, B, C, and D. If we let
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we can solve for the derivatives that have been taken with respect to the independent

parameters in eqs (2.73)- (2.75):
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Figure 2.18: The derivative of g by |Sa1| vs L/An with €g = (5.0,0.02), pk = (2.0,0.03).
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The measurement bounds for S-parameter data are obtained from specifications for a
network analyzer. The dominant uncertainty is in the phase of S;; as | Sy |— 0. The
uncertainty in |Sy;| is relatively constant until |Sy] < -50 dB, when it increases abruptly.
The various derivatives are plotted in figures 2.18 through 2.27.

In figures 2.28 through 2.31 the total uncertainty in €y and pk computed from Sn
and S;; is plotted as a function of normalized sample length. For low-loss and high-loss
materials at 3 GHz with various values of €; and the guided wavelength in the material
given by

xp(—~L) . (2.95)

2
A = . (2.96)
\/;(\/c’7+;”7+<’)ﬂ/ _ (%)2

In figures 2.28 through 2.31 the error due to the gap correction is not included, nor
are there uncertainties included for connector repeatability or flange bolt torquing. The
maximum uncertainty for low-loss materials occurs at multiples of one-half wavelength.
Generally, we see a decrease in uncertainty as a function of increasing sample length.
Also, the uncertainties in the S-parameters have some frequency dependence with higher
frequencies having larger uncertainties in phase.
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Figure 2.19: The derivative of € by ,; using Sa1 vs L/A,, with € = (5.0,0.01), uk =

(2.0,0.03).
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Figure 2.20: The derivative of €} with respect to 85 using Sy; with eg = (5.0,0.01), u% =
(2.0,0.03).
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Figure 2.21: The derivative of € with respect to L using S3; with e = (5.0,0.01), pg =
(2.0,0.03).
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Figure 2.22: The derivative of € with respect to L using Sz with € = (5.0,0.01), u =
(2.0,0.03).
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Figure 2.24: The derivative of €f with respect to |Sy;| with eg = (5.0,0.01), u = (2.0,0.03).
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Figure 2.25: The derivative of €f with respect to 61, using Sy with € = (5.0,0.01), ug =

(2.0,0.03).
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Figure 2.26: The derivative of €4 with respect to 61 using Sy with € = (5.0,0.01), pg =

(2.0,0.03).
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Figure 2.27: The derivative of € with respect to L using Sy; with e = (5.0,0.01), py =
(2.0,0.03).
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Figure 2.28: The relative uncertainty in €z(w) for a low-loss material as a function of
normalized length, with u% = (2,0.05), ¢ = (10,0.05) and (5, 0.05).
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Figure 2.29: The relative uncertainty in ph(w) for a low-loss material as a function of

normalized length, with pg = (2,0.05), g = (10,0.05) and (5,0.05).
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Figure 2.30: The relative uncertainty in €j(w) for a high-loss material
normalized length, with pk = (2,0.5), €gr = (10,0.5) and (5,0.5).
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Figure 2.31: The relative uncertainty in pix(w) for a high-loss material as a function of

normalized length, with u% = (2.0,0.5), ¢; = (10.0,0.5) and (5.0,0.5).
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Figure 2.32: The real part of the relative permittivity eg(w) for a nickel-zinc compound
with uncertainties.
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Figure 2.34: The real part of the reramve per
with uncertainties.
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Figure 2.33: The imaginary part of the relative permittivity e}(w) for a nickel-zinc com-
pound with uncer%gbties.

0.1

T T 7T

001 sl L4 s aaaagl PGS S N N G R
.

0.001 0.01 0.1 1 10

r4 . .
requen%eg%mt})f prlw) for a nickel-zinc compound

41



R

1

0.1

T—T T

st

0.01 *
0.001

Figure 2.35: The imaginary part of the relative permeability ph(w) for a nickel-zinc com-

pound with uncertainties.
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In figures 2.32 through 2.35 a measurement of a nickel-zinc ferrite compound is given
th associated uncertainties. Uncertainties increase at high and low frequencies. At
W . . . . .
ow frequency extremes the uncertainties in phase increase. Also, the scale is

high and 1
[Ogarithmic which distorts the lengths of the error bars.

9.5.2 Two Samples of Differing Lengths

Another method to determine permittivity and permeability is the measurement of two
samples with differing lengths. The advantage of this method is that each sample resonates
at a different frequency and therefore S;; can be appreciable over the entire frequency band.

We assume the S-parameters are functions of Si;(|Smnls Omns L1, L2). The parameters
used for measurements on materials of low to medium loss are

Z(1=T?)
‘-21(1) = 1 _ ZQF2 L] (297)

since it is acceptable down to -40 dB. We assume that the lengths of the samples are L,
and L, = aLy. Due to the two lengths, there are transmission coeflicients for each sample

Z, = exp(—vLy) , (2.98)
Z, = exp(—ayLy) . (2.99)

The relevant partial derivatives of eqs (2.97) are:
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We can rewrite eqs (2.100) through (2.103) as
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where we have defined parameters Ay, By, A,, and B,. Also for the relevant derivatives
with respect to length, we find
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We now can solve for the derivatives that have been taken with respect to the indepen-
dent parameters in eqs (2.104) through (2.107)
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In figures 2.36 through 2.37, the total uncertainty in € and p} computed from S,; is
plotted as a function of normalized sample length, for low-loss and high-loss materials at 3
GHz with various values of g

When the length of one sample is twice the length of the other sample, we see instability
at frequencies corresponding to nAn/2. Generally, we see a decrease in uncertainty as a
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Figure 2.36: The relative uncertainty in €z(w) for a low-loss material as a function of
normalized length for the case when L, = 0.5L; for two different permittivities.

function of increasing sample length. Also, the uncertainties in the S-parameters show
some frequency dependence. In figure 2.37 the ratio of sample lengths is V2. In this case
we see greater stability over the frequency range than in the case where the range is 0.5.
Resonances in the solutions will occur when L = ni,/2 and aL = mA,,/2 simultaneously,
where m is an integer.
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Figure 2.37: The relative uncertainty in €p(w) for a low-loss material as a function of
normalized length for the case when L} = 2L? for two different permittivities.
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2.6.1 Dielectric Materials

Wave
The uncertainty due to an air gap between s
partial derivatives of €j with respect to samp

waveguide are given by
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Coaxial Gap Correction

For coaxial line the relevant derivatives are given by
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2.6.2 Magnetic Materials
Waveguide Gap Uncertainty

partial derivatives of KR With respect to gap thicknesses, d. The relevant deri
waveguide are given by

Coaxial Gap Correction

For coaxial line the relevant derivatives are calculated using
[\’1 = ln Rz/Rl y

KNy =In R3/R, ,

N3 =InR,/R; ,
1\’4 = ln R4/R1 )
as follows ) )
Ol 1 , Ny K, K3
:\,[ﬂme“f—l_f]q
8R2 RQ]\Q ]\2 ]Xg ]\2
(9/1'R 1 [\,4 [\,1 [\,3
i S L R | 1+ —]. 2.140
8R3 R3 [\'2 [ umR [\’2 + ]\’2 + * '1\’2J ( )

9, ,
dlucft’ o [\1

= L 9141
OR, ~ "RRNE ( )
Iplp LY )
ety L 2142
OR, R 2 ( )

2.6.3 Higher Order Modes

The field model assumes a single mode of propagation in the sample. Propagation of higher
order modes becomes possible in inhomogeneous samples of high dielectric constant due
to changes in cutoff. Aijr gaps also play an important role in mode conversion. Generally,
the appearance of higher order modes manifests itself as a sudden dip in [S);]. This dip
is a result of resonance of the excited higher order mode. We can expect point-by-point
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reak down near higher order mode resonances for materials of high dielec-

lstob
ot or inhormogeneous samples. Optimized, multi-frequency solution techniques

" respect. The characteristic of the higher order modes are anomalies in
Tdr . - . .
ing matrix at and around resonance. Higher order modes require a coupling

(g mode
- constd .
hetter in this

5 scattef
i:;hamsm in order to begin propagating. In waveguide and coaxial line the asymmetry
| the sample promotes higher order mode propagation. In order to minimize the effects
i higher order modes, shorter samples can be used to maintain the electrical length less
han one-half guided wavelength. Also well machined sample are important in suppressing
nodes. igher order modes will not appear if the sample length is less than one-half guided

vavelength of the fundamental mode in the material.

Mode Suppression

It is possible to remove some of the higher order modes by mode filters. This would be
articularly helpful in cylindrical waveguide. One way to do this is to helically wind a fine

wire about the nner surface of the waveguide sample holder. thus eliminating longitudinal

currents and therefore TM modes. Another approach is to insert cuts in the waveguide

walls to minimize current loops around the waveguide.
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